Structured Factored Inference: A Framework for Automated Reasoning in Probabilistic Programming Languages

نویسندگان

  • Avi Pfeffer
  • Brian E. Ruttenberg
  • William Kretschmer
چکیده

Reasoning on large and complex real–world models is a computationally difficult task, yet one that is required for effective use of many AI applications. A plethora of inference algorithms have been developed that work well on specific models or only on parts of general models. Consequently, a system that can intelligently apply these inference algorithms to different parts of a model for fast reasoning is highly desirable. We introduce a new framework called structured factored inference (SFI) that provides the foundation for such a system. Using models encoded in a probabilistic programming language, SFI provides a sound means to decompose a model into sub–models, apply an inference algorithm to each sub–model, and combine the resulting information to answer a query. Our results show that SFI is nearly as accurate as exact inference yet retains the benefits of approximate inference methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lazy Factored Inference for Functional Probabilistic Programming

Probabilistic programming provides the means to represent and reason about complex probabilistic models using programming language constructs. Even simple probabilistic programs can produce models with infinitely many variables. Factored inference algorithms are widely used for probabilistic graphical models, but cannot be applied to these programs because all the variables and factors have to ...

متن کامل

Probabilistic Programming : Concepts and Challenges ( Extended Abstract ) Angelika Kimmig and Luc

A multitude of different probabilistic programming languages exists today, all extending a traditional programming language with primitives to support modeling of and reasoning with complex, structured probability distributions. Examples include functional languages (Church [Goodman et al., 2008], IBAL [Pfeffer, 2001]), object-oriented languages (Figaro [Pfeffer, 2009]), and logic languages (Pr...

متن کامل

The Logical Essentials of Bayesian Reasoning

This chapter offers an accessible introduction to the channel-based approach to Bayesian probability theory. This framework rests on algebraic and logical foundations, inspired by the methodologies of programming language semantics. It offers a uniform, structured and expressive language for describing Bayesian phenomena in terms of familiar programming concepts, like channel, predicate transfo...

متن کامل

The PITA System for Logical-Probabilistic Inference

Probabilistic Inductive Logic Programming (PILP) is gaining interest due to its ability to model domains with complex and uncertain relations among entities. Since PILP systems generally must solve a large number of inference problems in order to perform learning, they rely critically on the support of efficient inference systems. PITA [7] is a system for reasoning under uncertainty on logic pr...

متن کامل

Probabilistic Theorem Proving: A Unifying Approach for Inference in Probabilistic Programming

Inference is the key bottleneck in probabilistic programming. Often, the main advantages of probabilistic programming – simplicity, modularity, ease-of-use, etc. – are dwarfed by the complexity and intractability of inference. In fact, one of the main reasons for the scarcity/absence of large applications and real-world systems that are based in large part on probabilistic programming languages...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.03298  شماره 

صفحات  -

تاریخ انتشار 2016